

Table of Contents

1.	Introduction	2			
2.	Design data	2			
3.	Cylinder dimensions	3			
4.	Flange dimensions	5			
5.	Bolt dimensions	7			
6.	Gasket dimensions	9			
7.	Example	10			
8.	Conclusion	13			
Liter	ature	14			
Арр	endix A Cylinder wall thickness	15			
Арр	Appendix B Bolt dimensions				
Арр	Appendix C Gasket properties				
Арр	endix D Norm calculation	20			

About P3 Engineering

P3 Engineering develops software for the mechanical design, analysis and assessment of pressure vessels according to national and international standards. Our products are used in the manufacture, maintenance and control of pressure equipment or parts thereof. Together with our customers we strive for accessible and reliable software in order to be able to carry out this work as well as possible.

In addition, we have been providing engineering services such as the calculation of columns, heat exchangers and other types of pressure vessels for more than 20 years. We use this practical experience and the interaction with our clients to further optimize the software.

Disclaimer

P3 Engineering has compiled this document with great care. The calculations in this document are based on a number of general starting points which may not apply to all situations. All calculations are therefore only indicative and no rights can be derived from them or claims can be made.

1. Introduction

This article explains how to dimension a custom flange for a heat exchanger. From the internal diameter B the flange dimensions are determined step by step on the basis of a number of simple rules. The end result is a feasible flange with dimensions that can be used to do a stress analysis with, for example, the P3 Engineering <u>VES software</u>. The VES software includes implementations for norm calculations for flanges according to <u>ASME VIII Division 1</u> [A], <u>EN 13445-3</u> [B], <u>AD 2000</u> <u>Regelwerk</u> [C], and <u>Dutch Rules for Pressure Vessels (RTOD)</u> [D].

2. Design data

The following information is required to begin flange design.

a) The design conditions:

$$P_d = Design \ pressure$$
 [MPa] (1)

$$T_d = Design \ temperature$$
 [°C] (2)

$$C_a = Corrosion allowance$$
 [mm] (3)

b) The Outer Tube Limit:

Figure 1. Cross sections of a cylinder containing a tube bundle.

c) The bolt dimension:

$$d_b = \text{start with } \frac{3}{4}$$
" or M20 [mm] (5)

For large flange diameters or high design pressure, a larger bolt size d_b can be chosen to start the design.

In a flange norm calculation, the total bolt area is important for a leak-proof seal. The total bolt area A_b is equal to the number of bolts n_b times the bolt area per bolt A_k :

$$A_b = n_b A_k \qquad [mm] \qquad (6)$$

With the permissible tension of the bolt material equal to

$$f_{ba}$$
 [MPa] (7)

the total maximum bolt load can be calculated:

$$F_{nb} = f_{ba} A_b \tag{8}$$

For a leak-free flange connection, the maximum bolt load F_{nb} must be sufficient to apply the required gasket pressure. For more information, see Section 5 on bolt dimensions.

Bolts with a larger diameter d_b have a cross section with a larger area A_k . A larger diameter therefore results in a smaller number of bolts n_b needed to reach the same bolt area A_b . In Section 4 about the flange dimensions, it will be shown that with a larger bolt diameter d_b , the external diameter A of the flange will also increase.

d) The compression factor *m* of the gasket

$$m = 2$$
, for camprofile gaskets (9)
 $m = 3$, for spiral wound gaskets
 $m = 5.5$, for steel flat rings

To prevent leakage the gasket requires a minimum gasket pressure under operational conditions. This minimum gasket pressure is proportional to the size of the compression factor m. The size of the compression factor depends on the type of gasket and the materials used (see Table 4. *Gasket properties* m *and* y). A higher compression factor m results in a higher required operational gasket pressure. To guarantee this gasket pressure, a higher bolt load F_{nb} is required, i.e. a larger number of bolts n_b or a larger bolt diameter d_b .

3. Cylinder dimensions

The flange dimensions are constructed from the internal diameter B (see Figure 1). The flange dimensions are determined from the inside out. Afterwards, when the external diameter A has been calculated, the gasket dimensions can also be determined.

First, this internal diameter B is calculated using the following formula:

$$B \ge OTL + 12 \qquad [mm] \qquad (10)$$

The internal diameter B may have to be larger depending on the function or construction of the heat exchanger. For example in case of a boiler type heat exchanger or when space is required for sliding strips.

Secondly, the required wall thickness t_{cr} of the connecting cylinder is determined. Figure 2 shows the required wall thickness of t_{cr} for a carbon steel cylinder with an external diameter of $D_o = 1000 \ [mm]$ as a function of the design pressure P_d and the design temperature T_d . The wall thickness t_{cr} is calculated using the formulas of ASME VIII Division 1 - Appendix 1 [A] and the material properties from ASME II - Part D [E].

$$t_{cr} = \frac{P_d R_o}{SE_i + 0.4P_d}$$
 [mm] (11)

$R_o = External radius of the cylinder$	[mm]
S = Permissible stress of the material	[MPa]

 E_i = Weld factor of the longitudinal seam of the cylinder [-]

See Appendix A for tabulated values of t_{cr} as a function of design pressure P_d and design temperature T_d .

Figure 2. Required cylinder wall thickness t_{cr.}

For diameters other than Do = 1000 mm, an estimate of the cylinder wall thickness t_c can be made using Figure 2 and the formula below.

$$t_c = \frac{B t_{cr}}{1000 - 2 t_{cr}} + C_a$$
 [mm] (12)

In addition a manufacturing tolerance t_{tol} on the wall thickness t_c must be taken into account in case a standard pipe is used.

The tolerance for pipes according to ASME B36.10M [F] and ASME B36.19M [G] is:

$$t_{tol} = 12.5$$
 [%] (13)

For pipes made of materials from the European standards EN 10216 [H] and EN 10217 [I] there are different tolerances depending on the type of material, carbon steel or stainless steel, the diameter and the wall thickness.

4. Flange dimensions

gure	3.	Flange	nomenclatures	for	ASME	VIII	Division 1.
huic.	•••	Tunge	noniciatarcs				DIVISIONI

The hub thickness at the welding end is equal to the wall thickness t_c of the cylinder:

$$g_0 = t_c \qquad [mm] \qquad (14)$$

The hub has a minimum height that depends on the machines and tools used. In this case a minimum hub height of 15 mm has been chosen. Increase the minimum hub height if more space is needed around the hub. For example as a result of the manufacturing process.

$$h_{min} = 15 \qquad [mm] \qquad (15)$$

The height of the hub also depends on the thickness g_0 at the welding end. This dependency is given by the hub height coefficient:

$$C_{hh} = 2 \tag{16}$$

From this follows the formula for the height of the hub:

$$h = C_{hh}g_0 \ge h_{min} \qquad [mm] \qquad (17)$$

5

[*mm*]

For a conical hub a slope coefficient is used:

$$C_{hs} = 3 \tag{18}$$

The thickness of the hub at the flange blade can be calculated using C_{hs} using the following formula:

$$g_1 = \frac{h}{C_{hs}} + g_0 \qquad [mm] \qquad (19)$$

The external diameter of the hub is then calculated as follows:

$$D_h = B + 2g_1 \qquad [mm] \qquad (20)$$

Depending on the application or manufacturing method, different values for h_{min} , C_{hh} , and C_{hs} can be chosen. Please make sure that the slope of the hub still meets the requirements of the selected flange calculation norm. The slope coefficient C_{hs} should not be chosen too small.

Appendix B contains the minimum values for radial flange sizes R and E. These minimum sizes ensure that there is enough space for mounting tools and that the nuts do not protrude beyond the flange. The radial distance from the hub to the bolt circle has to satisfy:

$$R \ge S_{Hmin} \qquad [mm] \qquad (21)$$

The size S_{Hmin} is based on a socket wrench or a torque wrench. Other values are available for hydraulic tightening equipment that depends on the diameter of the hydraulic head. Each tool supplier has its own datasheet with minimum radial distances for R and E.

There is also a minimum value for the radial distance *E* from bolt circle *C* to the external diameter of the flange blade *A*:

$$E \ge S_{Emin}$$
 [mm] (22)

Now the diameter of the bolt circle *C* can be calculated as follows:

$$C = D_h + 2R \qquad [mm] \qquad (23)$$

And for the external diameter A of the flange blade the following rule applies:

$$A = C + 2E \qquad [mm] \qquad (24)$$

Because the minimum radial distance E increases for larger bolt diameters, the external diameter A will also increase when choosing a larger bolt diameter d_b .

The exact flange thickness cannot yet be determined, because for a norm calculation all dimensions of the flange must first be known. Therefore an estimate for the flange thickness t is used as a starting point. The estimate is a function of the previously determined cylinder thickness t_c and a thickness coefficient C_{ft} . The initial estimate for the flange thickness is calculated as follows:

$$C_{ft} \in [5,6,7] \tag{25}$$

$$t = C_{ft} t_c \qquad [mm] \qquad (26)$$

With an increasing cylinder thickness t_c , which depends on the design pressure P_d , the estimated flange thickness t will increase proportionally. The final norm calculation will show whether this flange thickness t is sufficient. If this is not the case, the optimum flange thickness must be found in an iterative way. Different flange norms will result in a different flange thickness.

5. Bolt dimensions

To determine the bolt dimensions, use the tables in *Appendix B*. In these tables, the bolt dimensions and fitting dimensions are given as a function of the bolt diameter.

Figure 4. Bolt configuration.

The nominal bolt diameter is:

$$d_b$$
 (27)

The following rules apply to the diameter of the bolt hole:

...

$$d_{bh} \ge d_b + 2.5 \text{ for } M12$$
 [mm] (28)

$$d_{bh} \ge d_b + 3 \text{ for } 3/4$$
 " [mm]

 $d_{bh} \ge d_b + 10 \, mm \, for \, M56 \qquad [mm]$

A smaller bolt hole diameter d_{bh} is possible if the misalignment of the flange is limited during installation. In this case the following applies to all bolt holes:

$$d_{bh} \ge d_b + 3 \qquad [mm] \tag{29}$$

The maximum distance between the bolts S_{bmax} can be determined in two ways. The first way is according to TEMA *RCB-11.23- Load Concentration Factor* [J] in which S_{bmax} is determined as follows:

$$S_{bmax} = 2d_b + \frac{6t}{m+0.5}$$
 [mm] (30)

The second way is to determine the maximum distance S_{bmax} between the bolts using ASME VIII Division 1 - Appendix 2 [A]:

$$S_{bmax} = 2d_b + t \qquad [mm] \qquad (31)$$

Limiting the distance between the bolts should prevent the seal from leaking. If the bolts are too far apart, there may not be sufficient gasket pressure in the area between the bolts. Leakage may occur in this area. If the bolt distance is still greater, the calculated flange moment in the norm calculation must be increased by a factor of C_{Mb} :

$$C_{Mb} = \sqrt{\frac{S_b}{S_{bmax}}} \ge 1.0 \tag{32}$$

The minimum distance between the bolts can be determined using the tables in Appendix B :

$$S_{bmin}$$
 = see Appendix B Bolt dimensions [mm] (33)

The minimum number of bolts n_{bmin} can now be determined with:

$$n_{bmin} = \pi \frac{C}{S_{bmax}} \tag{34}$$

Similarly the maximum number of bolts can be determined with:

$$n_{bmax} = \pi \frac{C}{S_{bmin}} \tag{35}$$

The arithmetic mean is used to estimate the required number of bolts n'_b :

$$n_b \ge n_b' = \frac{(n_{bmin} + n_{bmax})}{2}; \ n_b \in [4, 8, 12, \dots]$$
 (36)

The number of bolts n_b must be a multiple of 4. For n_b , choose the next multiple of 4 bigger or equal to n'_b .

The actual number of bolts n_b in the flange design can only be determined using a norm calculation such as ASME VIII Division1 - Appendix 2 [A]. The calculation will show if there are enough bolts to keep the gasket closed in the following states:

- 1) When mounting with a minimum gasket pressure $P_g = y$.
- 2) During operational conditions with a minimum gasket pressure $P_g = mP_d$.

Norm calculations for flanges have the total bolt area as input. To get to the desired value of the total bolt area $A_b = n_b A_k$ it is possible to vary both the number of bolts n_b and the bolt diameter d_b .

6. Gasket dimensions

When designing a flange for a heat exchanger, a narrow gasket is assumed to lie entirely within the bolt circle. In addition, there is a confining diameter D_{gc} within which the gasket lies.

Figure 5. Gasket configuration.

The minimum radial distance from the edge of the bolt hole to the gasket confining diameter is at least equal to:

$$S_{fcon} = 6 \qquad [mm] \qquad (37)$$

For large flange diameters, the value for S_{fcon} can be selected larger. Particularly for high design pressures, it can be advantageous to keep the gasket diameter as small as possible. This reduces the internal pressure surface of the flange. In that case S_{fcon} must be selected in such a way that the internal gasket diameter is close to the internal diameter of the flange.

The following formula applies to the confining diameter D_{gc} of the gasket:

$$D_{gc} = C - d_{bh} - 2S_{fcon} \qquad [mm] \qquad (38)$$

Where the confining depth h_{gc} for the gasket is at least 6 mm:

$$h_{ac} = 6 \qquad [mm] \qquad (39)$$

The confining depth must be greater than the gasket thickness.

The minimum radial distance between the confining diameter D_{gc} and the external diameter of the gasket is as follows:

$$S_{gcon} = 3 \qquad [mm] \qquad (40)$$

This can be used to calculate the external diameter D_{go} of the gasket:

$$D_{go} = D_{gc} - 2S_{gcon} \qquad [mm] \qquad (41)$$

For the gasket width applies:

$$b_g = \in [13, 16, 19, \dots]$$
 [mm] (42)

If the gasket width b_g is too narrow, the surface pressure of the gasket for seating can be too high for large flange diameters or high design pressures. A larger gasket width b_g should then be selected (16 mm or larger). However, if the gasket width is too large, the bolt loads will be unnecessarily high during assembly. The final check of the gasket width b_g takes place during the norm calculation.

The gasket must stay completely within the confining diameter. For this reason, the following applies to the maximum gasket thickness:

$$t_{gmax} = h_{gc} - 2 \qquad [mm] \qquad (43)$$

7. Example

In this section an example will be given which demonstrates the effectiveness of the above approach as an initial step to quickly get to a flange design which is norm compliant. The initial design data are estimated using the procedure as described in this article and are given in the tables below. Numbers in the table refer to equation numbers in this article.

This initial flange design is then used as input for the <u>VES software</u> in order to do ASME VIII Division 1 flange norm calculations. We will show that after the initial design only a few iterations are needed in order to get to a norm compliant design.

1) Design Data

(1)	Design pressure	P_d	= 2.9	[MPa]
(2)	Design temperature	T_d	= 200	[°C]
(3)	Corrosion allowance	Ca	= 3	[<i>mm</i>]
(4)	Smallest diameter around the pipes	OTL	= 962	[<i>mm</i>]
(5)	Bolt diameter	d_b	= UNC 1"	[in.]
(9)	Compression factor camprofile gasket	т	= 2	[-]

2) Flange dimensions

(10)	$B \ge OTL + 12$	В	= 974	[<i>mm</i>]
(11)	Estimated wall thickness $D_o = 1000 \ [mm]$	t_{cr}	= 13	[mm]
(12)	$t_c = \frac{B \ t_{cr}}{1000 - 2 \ t_{cr}} + C_a$	t_c	= 16	[mm]
(14)	$g_0 = t_c$	g_{o}	= 16	[mm]
(16)	Height coefficient of the hub	C_{hh}	= 2	-
(17)	$h = C_{hh}g_0 \ge h_{min}$	h	= 32	[mm]
(18)	Slope coefficient of the hub	C_{hs}	= 3	[-]
(19)	$g_1 = \frac{h}{C_{hs}} + g_0$	g_1	= 27	[<i>mm</i>]
(20)	$D_h = B + 2g_1$	D_h	= 1028	[mm]
(21)	$R \ge S_{Hmin} = 29$	R	= 35	[mm]
(23)	$C = D_h + 2R$	С	= 1098	[mm]
(22)	$E \ge S_{Emin} = 27$	Ε	= 27	[mm]
(24)	A = C + 2E	A	= 1152	[mm]
(25)	Estimated thickness coefficient $C_{ft} \in [5,6,7]$	C_{ft}	= 6	[-]
(26)	$t = C_{ft} g_0$	t	= 96	[<i>mm</i>]

3) Bolt dimensions

(27)	Selected bolt diameter	d_b	= 25.4	[<i>mm</i>]
(29)	$d_{bh} \ge d_b + 3$	d_{bh}	= 29	[mm]
(31)	$S_{bmax} = 2d_b + t$	S _{bmax}	= 146.8	[mm]
(34)	$n_{bmin} = \pi \frac{C}{S_{bmax}}$	nbmin	= 23.5	
(33)	<i>S_{bmin}</i> = see <i>Appendix B Bolt dimensions</i>	S_{bmin}	= 57	[<i>mm</i>]

(35)
$$n_{bmax} = \pi \frac{C}{S_{bmin}}$$

$$n_{bmax} = 60.52$$

$$n_{bmax} = 60.52$$

$$n_{b} \ge n'_{b} = \frac{(n_{bmin} + n_{bmax})}{2}$$

$$n'_{b} = 42.01$$

$$n_{b} = 44$$

4) Gasket dimensions

(37)	Minimal radial distance bolt hole to D_{gc}	S _{fcon}	= 6	[<i>mm</i>]
(38)	$D_{gc} = C - d_{bh} - 2S_{fcon}$	D_{gc}	= 1057	[<i>mm</i>]
(39)	Confining height	h_{con}	= 6	[mm]
(40)	Minimal radial distance D_{go} to D_{gc}	S_{gcon}	= 3	[mm]
(41)	$D_{go} = D_{gc} - 2S_{gcon}$	D_{go}	= 1051	[mm]
(42)	Gasket width $b_g = \in [13, 16, 19, \dots]$	b_g	= 13	[mm]
(43)	$t_{gmax} = h_{gc} - 2$	t_{gmax}	= 4	[mm]

The above values are used as input for the VES software to perform an ASME VIII Division 1 flange norm calculation. The results are given in Appendix D. On pages 2 and 3 of the output from VES you can see that the initial design does not yet meet the requirements of ASME VIII Division 1.

On page 2, the total bolt area A_b is marked in red because the requirement $A_b \ge A_m$ has not yet been met. Here A_m is the bolt area which is required to ensure that the minimum gasket pressure is guaranteed during assembly and operational conditions.

$$A_b = n A_k = \mathbf{15642.00} \qquad [mm^2] \qquad (44)$$

$$A_b \ge A_m = 16721.83 \qquad [mm^2] \tag{45}$$

On page 3 of the calculation, the stress S_{Co} is marked in red because the requirement $S_{Co} \leq S_{fo}$ has not been met.

$$S_{Co} = Max \left[\frac{(S_{Ho} + S_{Ro})}{2}, \frac{(S_{Ho} + S_{To})}{2} \right] = \mathbf{146.14}$$
 [N/mm²] (46)

$$S_{Co} \le S_{fo} = 137.93$$
 [N/mm²] (47)

In order for the flange to comply with the norm, the following two modifications are made.

First, the flange thickness t is increased by 4 mm, which will reduce the stress S_{Co} .

$$t = 96 + 4 = 100$$
 [mm]

Secondly, the number of bolts n_b is increased by 4 in order to increase the total bolt area A_b .

$$n_b = 44 + 4 = 48$$

After these minor adjustments, the flange is recalculated using the VES software. The results now show that the bolt surface A_b and the stress S_{Co} also meet the requirements of ASME VIII Division 1.

$$A_b = n A_k = \mathbf{17064.00} \qquad [mm^2] \qquad (48)$$

$$A_b \ge A_m = 16721.83 \qquad [mm^2] \tag{49}$$

$$S_{Co} = Max \left[\frac{(S_{Ho} + S_{Ro})}{2}, \frac{(S_{Ho} + S_{To})}{2} \right] = 137.34$$
 [N/mm²] (50)

$$S_{Co} \le S_{fo} = 137.93$$
 [N/mm²] (51)

8. Conclusion

Using a limited number of input data, it is possible to design a custom flange for a heat exchanger. By means of a number of estimated coefficients, a practical design can be realized that is reasonably close to the requirements for a flange norm calculation. The following parameters are available to guide the initial flange design:

Parameter		Standard value	
Bolt diameter	d_b	⅓4", M20	$d_b \ge 3/4$ "
Height coefficient of the hub	C_{hh}	= 2	$C_{hh} \ge 2.0$
Slope coefficient of the hub	C_{hs}	= 3	$C_{hs} \ge 3.0$
Estimated thickness coefficient	C_{ft}	= 6	$C_{ft} \in [5,6,7]$
The compression factor	m	= 2	$m \in [0 \dots 6.5]$

In order to comply with the norm calculation, it will be necessary to do one or more iterations in which the estimation coefficients may have to be changed slightly in order to get closer to the desired result. Eventually the last optimizations can take place during the norm calculations, for example by changing the flange thickness *t* or the number of bolts n_b.

Literature

- [A] ASME Boiler and Pressure Vessel Code, Section VIII Rules for Construction of Pressure Vessels, Division 1,release 2015
- [B] EN 13445 Unfired pressure vessels Part 3: Design, Issue 3 2016
- [C] AD 2000 Regelwerk, Arbeitsgemeinschaft Druckbehälter
- [D] Dutch Rules for Pressure Vessels (RTOD), Technical Committee for "Toestellen onder Druk"
- [E] ASME Boiler and Pressure Vessel Code, Section II Materials, Part D, Properties, release 2015
- [F] ASME B36.10M, Welded and Seamless Wrought Steel Pipe
- [G] ASME B36.19M, Stainless Steel Pipe
- [H] EN 10216, Seamless steel tubes for pressure purposes.
- [I] EN 10217, Welded steel tubes for pressure purposes.
- [J] TEMA: Standard of the Tubular Exchanger Manufacturers Association, Ninth Edition

Appendix A Cylinder wall thickness

Required cylinder thickness t_{cr} according to ASME VIII Division 1 [A] Appendix 1-1:

$$t_{cr} = \frac{P_d R_o}{SE + 0.4P_d}$$
[mm] (52)

$$D_o = 1000$$
 [mm] (53)

$$R_o = 500$$
 [mm] (54)

$$E = 1.0 \tag{55}$$

	т	S						P [MPa]				
ţD	[°C]	[MPa]	0	1	2	3	4	5	6	7	8	9	10
stress S ASME II part SA-516-Gr.60	up to 250	118.00	0.00	4.22	8.42	12.58	16.72	20.83	24.92	28.97	33.00	37.01	40.98
	300	115.00	0.00	4.33	8.64	12.91	17.15	21.37	25.55	29.71	33.84	37.94	42.02
	325	112.00	0.00	4.45	8.87	13.25	17.61	21.93	26.22	30.49	34.72	38.93	43.10
owable	350	108.00	0.00	4.61	9.19	13.74	18.25	22.73	27.17	31.59	35.97	40.32	44.64
Alle	375	104.00	0.00	4.79	9.54	14.26	18.94	23.58	28.20	32.77	37.31	41.82	46.30
	400	88.90	0.00	5.60	11.15	16.65	22.10	27.50	32.86	38.17	43.43	48.65	53.82

Table 1. Required wall thickness t_{cr} for a carbon steel cylinder with $D_0 = 1000 \ [mm]$.

Appendix B Bolt dimensions

The bolt size tables contain bolt sizes and the minimum distances required to design a mountable flange (see TEMA [J] Tabel D-5).

[*mm*]

[*mm*]

[*mm*]

[*mm*]

[*mm*]

[*mm*]

Figure 6. Bold dimensions.

Nominal diameter	Hole diameter	Minimum distance	Radial distance hub to bolt ciclel	Minimum corner radius	Radial distance bolt circle to edge				
	Bolts for non-standard flanges: Unified Inch thread								
dь	d _{bh}	S _{Bmin}	S _{Hmin}	r _h	S _{Emin}				
5/8"	19	38	24	8	19				
3/4"	22	45	29	10	21				
7/8"	25	52	32	10	24				
1"	28	57	35	11	27				
1 1/8"	32	64	38	11	29				
1 1/4"	35	72	45	14	32				
1 3/8"	38	78	48	14	35				
1 1/2"	41	83	51	16	38				
1 5/8"	44	89	54	16	41				
1 3/4"	47	95	57	16	45				
1 7/8"	51	102	60	16	48				
2"	54	108	64	18	51				
2 1/4"	60	121	70	18	57				
2 1/2"	67	133	78	21	60				
2 3/4"	73	146	86	22	67				
3"	79	159	92	24	73				

Table 2. Unified Inch thread.

Nominal diameter	Hole diameter	Minimum distance	Radial distance hub to bolt circle	Minimum corner radius	Radial distance bolt circle to edge	
	Bolts for non-standard flanges: Metric thread					
dь	d _b d _{bh} S _{Bmin} S _{Hmin} r _h S _{Emin}					
M12	15	31.75	20.64	7	15.88	
M16	19	44.45	28.58	7	20.64	
M20	23	52.39	31.75	9	23.81	
M22	25	53.98	33.34	9	25.40	
M24	27	58.74	36.51	9	28.58	
M27	30	63.50	38.10	11	29.00	
M30	33	73.03	46.04	11	33.34	
M33	36	79.00	51.00	12	37.00	
M36	39	84.14	53.97	12	39.69	
M42	45	100.00	61.91	14	49.21	
M48	51	112.71	68.26	15	55.56	
M56	59	127.00	76.20	17	63.50	
M64	67	139.70	84.14	19	66.68	
M72	75	155.58	88.90	24	69.85	
M80	83	166.69	93.66	27	74.61	
M90	93	188.91	107.95	28	84.14	
M100	103	207.96	119.06	30	93.66	

Table 3. Metric thread.

Appendix C Gasket properties

т	Compression factor of the gasket. To calculate the required operational bolt load, the design pressure P_d is multiplied by the compression factor m. This ensures sufficient gasket pressure in
	the operational state to prevent leakage.
у	Minimum surface tension required for a leak-proof flanged connection during installation. This parameter is used to calculate the minimum total bolt load for the seating condition.
D_{go}	Outside diameter
b_g	Gasket width
t_g	Gasket thickness

Tables with gasket parameters m and y can be found in the calculation norms. They can also be found in the catalogues of gasket suppliers.

All flange calculation norms determine the minimum bolt load required for a leak-free connection using parameters m and y. However, not all norms check whether the maximum gasket pressure is exceeded. The maximum gasket pressure depends on the type of gasket, the materials used and the design temperature T_d and is usually found in the manufacturer's catalogue.

Table 4. Gasket properties *m* and *y*.

ASME VIII Division 1 Table 2-5.1					
Gasket compression ractor <i>m</i> and minimum design seating stress y	m	v	,		
shape and material	[-]	, [psi]	[MPa]		
Self-engineering types	0.00	0	0.0		
Elastomers without fabric or high percentage of mineral fiber					
Below 75A Shore Durometer	0.50	0	0.0		
75A or higher Shore Durometer	1.00	200	1.4		
Mineral fiber with binder					
1/8 inch (3.2 mm) thick	2.00	1600	11.0		
1/16 inch (1.6 mm) thick	2.75	3700	25.5		
1/32 inch (0.8 mm) thick	3.50	6500	44.8		
Elastomers with cotton fabric insertion	1.25	400	2.8		
Elastomers with mineral fiber fabric insertion with or without wire reinforcement					
3-ply	2.25	2200	15.2		
2-ply	2.50	2900	20.0		
1-ply	2.75	3700	25.5		
Vegetable Fiber	1.75	1100	7.6		
Spiral-wound metal, mineral fiber filled					
Carbon	2.50	10000	69.0		
Stainless, Monel and nickel based alloys	3.00	10000	69.0		
Corrugated metal, mineral fiber insert, or corrugated metal, jacketed mineral fiber filled					
Soft aluminum	2.50	2900	20.0		
Soft copper or brass	2.75	3700	25.5		
Iron or soft steel	3.00	4500	31.0		
Monel or 4-6% chrome	3.25	5500	37.9		
Stainless steel and nickel based alloys	3.50	6500	44.8		
Corrugated metal					
Soft aluminum	2.75	3700	25.5		
Soft copper or brass	3.00	4500	31.0		
Iron or soft steel	3.25	5500	37.9		

ASME VIII Division 1 Table 2-5.1							
Gasket compression factor <i>m</i> and minimum design seating stress y							
Gasket types	m	у					
shape and material	[-]	[psi]	[MPa]				
Monel or 4-6% chrome	3.50	6500	44.8				
Stainless steels and nickel based alloys	3.75	7600	52.4				
Flat metal, jacketed mineral fiber filled							
Soft aluminum	3.25	5500	37.9				
Soft copper or brass	3.50	6500	44.8				
Iron or soft steel	3.75	7600	52.4				
Monel	3.50	8000	55.2				
4-6% chrome	3.75	9000	62.1				
Stainless steels and nickel based alloys	3.75	9000	62.1				
Grooved metal							
Soft aluminum	3.25	5500	37.9				
Soft copper or brass	3.50	6500	44.8				
Iron or soft steel	3.75	7600	52.4				
Monel or 4-6% chrome	3.75	9000	62.1				
Stainless steels and nickel based alloys	4.25	10100	69.7				
Solid flat metal							
Soft aluminum	4.00	8800	60.7				
Soft copper or brass	4.75	13000	89.7				
Iron or soft steel	5.50	18000	124.1				
Monel or 4-6% chrome	6.00	21800	150.3				
Stainless steels and nickel based alloys	6.50	26000	179.3				
Ring joint							
Iron or soft steel	5.50	18000	124.1				
Monel or 4-6% chrome	6.00	21800	150.3				
Stainless steels and nickel based alloys	6.50	26000	179.3				
Stainless steel camprofile							
Graphite layer low pressure	2.00	3200	22.1				
Graphite layer medium pressure	2.00	6600	45.5				
Graphite layer high pressure	2.00	10000	69.0				
Spiral wound, SS 316L, graphite filled	3.00	10000	69.0				

Appendix D Norm calculation

In this appendix a complete flange calculation according to the ASME VIII Division 1 Appendix 2 norm is made with our <u>VES software</u>. Page 1 contains the input data with the flange dimensions taken from the example calculation in chapter 7.

ASME VIII div.1 [Issue 2017]						
		Append	lix 2 Bolted flange conn	ections		
Type of flange			Integral hub			
Design pressu	ire	Р	3.1		N/mm²	
Design temper	rature	т	200		°C	
Material			A-105		-	
Allowable stre	ss at T	Sfo	137.93		N/mm²	
Allowable stre	ss at 20 °C	Sfa	137.93		N/mm²	
Modulus of ela	asticity at T	E	198000		N/mm²	
Outside diame	eter	A	1152		mm	
Nominal inside	e diameter	Bn	974		mm	
Bolt circle dia	meter	С	1098		mm	
Mean gasket d	liameter	G	1038		mm	
Nominal flang	e thickness	tn	96		mm	(t = tn - Caf)
Allowance on	flange facing	Caf	0		mm	(Optional: default Caf = 0)
Flange-to-she	Il connection					
Nominal hub t	hickness (small end)	g0n	16		mm	
Nominal hub t	hickness (large)	g1n	27		mm	
Hub height		h	32		mm	
Corrosion allo	wance	Ca	3		mm	
Bolting materi	al		A-193-B16<=2.5			
Allowable stre	ss at T	Sho	172 41		N/mm ²	
Allowable stre	ss at 20 °C	Sha	172.41		N/mm ²	
Number of bol	te		44		-	
Nominal bolt of	liamotor		25.40		- mm	
Root area per	halt	a ٨٢	355 50		mm ²	
Optional: only	required for flange pairs with	different decig	n conditions (overable:	two flanges ar	und a tubach	aat)
Min Am high	required for hange pairs with	Am'		two nanges are	mm ²	(Optional: default=0)
Min. Am nigh		Am	0.00		M	
Operating load		VV0	Comprofile SS with grop	hita lavor (high r		(optional, delault - 0)
Gasket materia	ai	N				
Gasket width		N	13		mm	
Basic seating	width	00	0.0		mm	
Effective width	1	d	69.05		mm	
Minimum seat	ing pressure	у	06.90		N/mm-	
Gasket compr		m Oraf	2	(No. tuboohoot	-	1-> Cof-1 2: 2-> Cof-1 6)
Gasket partitio	on factor: default = 1.0	Gpf		(INO. tudesneet	partition lanes:	1=>Gpt=1.3; 2=>Gpt=1.6)
llsor	P3 Engineering AvdV			Joh	P-001	
Client	P3 Engineering, Avuv			ltom	Flange 1	
Leasticr	The Netherlands			Dort	Flange 4	
Drog Davi				Part	A	19/ lum/10
Date	18/Jun/19 11:29:02	Signed		Code	A.U Ann 2	Page 1

ASME VIII div.1 [Issue 2017]								
Appendix 2 Bolted flange connections								
Calculated value	ues			1				
B = Bn + 2 Ca		В	980		mm			
g0 = g0n - Ca		g0	13		mm	<u>m</u>		
g1 = g1n - Ca		g1	24		mm			
t = tn - Caf		t	96		mm			
Bs = pi C/n		Bs	78.40		mm	(Bsmin <= Bs <= Bsmax)		
Minimum bolt	spacing	Bsmin	58.00		mm	(center-to-center)		
Bsmax = 2a + 6	6t / (m+0.5)	Bsmax	281.20		mm			
Max. number o	of bolts = pi C / Bsmin	nbmax	59.47		-	(to fit bolt circle)		
R = (C - B)/2 - g	g1	R	35.00		mm	$(R \ge Rmin)$		
Minimum dista	ance bolt circle to hub	Rmin	35.00		mm			
E = (A - C)/2		E	27.00		mm	$(E \ge Emin)$		
Min. distance i	bolt circle to flange O.D.	Emin	27.00		mm			
Flange loading	15		000000					
$H = pi/4 G^2 P$	- D O (н	2623290		N			
Hp = 2 b pi G n	n P Gpt	нр	259784		N			
Wm1 = H + Hp	0	Wm1	2883074		N			
Wm2 = pibGy	y Gpt	Wm2	1444474		N			
Am1 = Wm1 / S	Sbo	Am1	16/21.83		mm²			
Am2 = Wm2 / S		Am2	8377.95		mm ²			
	1,Am2, Am [*])	Am	16721.83		mm-	(Ab > - Am)		
	4 14/ - 1)	Ab	15642.00		mm-	(AD >= AM)		
	1,WO')	W0	2883074		N			
Wa = (Am+Ab)	Sba/2	vva	2789985		N	$(N \rightarrow N)$		
Nmin = Ab Sba		Nmini	6.00		mm	$(N \ge NMIN)$		
$HD = pi/4 B^2 P$	ange	ЦП	2338310		N			
			250519		N			
		по	209704		N			
$hD = R + 0.5 a^2$	1	hD	47.00		mm			
hG = (C - G)/2	1	hG	47.00					
hG = (C - G)/2	2)/2	но ьт	44.50		mm			
MD = hD HD	<i>JµE</i>	MD	109900985		Nmm			
MG = hG HG		MG	7793521		Nmm			
		мт	12681211		Nmm			
Mo' = MD + MC	3 + MT	Mo'	130375717		Nmm			
Ma' = Wa hG	·	Ma'	83699557		Nmm			
Bsc = Max(sgr	(Bs / (2a + t)), 1.0)	Bsc	1 0000		-	(Bsc >= 1)		
K = A/B		ĸ	1,1755		-			
h0 = sar(B a0)		h0	112.8716		mm			
h/h0		h/h0	0.2835		-			
Fig 2-7.1		1.8487		-				
Fig. 2-7.1 7		6.2380		-				
Fig. 2-7.1		12.0870		-				
Fig. 2-7.1		13.2824		-				
Fig. 2-7.2		0.8751		-				
Fig. 2-7.3 V		0.3262		-				
Fig. 2-7.6 f		1.8380		-				
e = F/h0 e		7.75E-03		1/mm				
g1/g0 g1/g0		1.8462						
d = U/V h0 a0 ² d		776636.1596		mm ³				
User P3 Engineering. AvdV			Job	P-001				
Client P3 Engineering				Item	Flange-1			
Location	The Netherlands			Part	Flange 1			
Prog. rev.	VES [19]			Revision	A.0	18/Jun/19		
Date	18/Jun/19 11:29:02	Signed		Code	App 2	Page 2		

ASME VIII div.1 [Issue 2017]							
		Append	ix 2 Bolted flange conn	ections			
L = (t e + 1)/T +	· t³/d	L	2.0827				
Stresses unde	r operating condition						
Allowable stre	SS	Sfo	137.93		N/mm²		
Allowable stre	ss hub	1.5 Sfo	206.90		N/mm²		
Mo = Mo' Bsc		Мо	130375717		Nmm		
SHo = f Mo / (L	. g1² B)	SHo	203.83		N/mm²	(SHo <= 1.5 Sfo)	
SRo = (1.33 t e	+ 1) Mo / (L t² B)	SRo	13.79		N/mm²	(SRo <= Sfo)	
STo = Y Mo/(t ²	B) - Z Sro	STo	88.45		N/mm²	(STo <= Sfo)	
SCo = Max[(SI	lo+SRo)/2. (SHo+STo)/21	SCo	146.14		N/mm²	(SCo <= Sfo)	
Stresses unde	r atmospheric condition						
Allowable stre	SS	Sfa	137.93		N/mm²		
Allowable stre	ss hub	1.5 Sfa	206.90		N/mm²		
Ma = Ma' Bsc		Ма	83699557		Nmm		
SHa = f Ma / (L	g1² B)	SHa	130.86		N/mm²	(SHa <= 1.5 Sfa)	
SRa = (1.33 t e	+ 1) Ma / (L t ² B)	SRa	8.85		N/mm²	(SRa <= Sfa)	
STa = Y Ma/(t ²	B) - Z Sra	STa	56.78		N/mm ²	(STa <= Sfa)	
SCa = MaxI(SH	/ la+SRa)/2. (SHa+STa)/21	SCa	93 82		N/mm²	(SCa <= Sfa)	
J = 52.14 Mo'	$1/(1 E a 0^2 h 0 0.3)$		0.94		-	(
User	P3 Engineering, AvdV			Job	P-001		
Client P3 Engineering			Item	Flange-1			
Location	The Netherlands			Part	Flange 1		
Prog. rev.	VES [19]			Revision	A.0	18/Jun/19	
Date	18/Jun/19 11:29:02	Signed		Code	Αρρ 2	Page 3	